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Abstract

Flory’s lattice theory has been applied to the polymer blends containing a thermotropic liquid crystalline polymer (LCP) and flexible chain
polymers. The phase behavior of blends of a thermotropic LCP and a flexible chain polymer at melt processing temperature can be evaluated
by two quantitative parameters: the polymer–polymer interaction parameter (x12) and the degree of disorder (y/x1). From the results of the
model calculation, it has been found that the miscibility is increased with the increase of the degree of disorder (y/x1) of the LCP and with the
decrease of the degree of polymerization (x1mand/orx2). The simulated spinodal curve of ternary polymer blends containing a thermotropic
LCP and two flexible chain polymers has been calculated using the lattice theory. When three pairs of binary polymer blends are immiscible,
the coexistence curve of the three phases appears for the ternary blend having similar values ofx ij among component polymers. When the
LCP is immiscible with two flexible chain polymers, and also when the two flexible chain polymers are miscible with each other, the strong
effect of anisotropy of the LCP is observed in the simulated spinodal curve. When three pairs of binary polymer blends are miscible, a phase
separation is also observed due to theuDxu effect.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Liquid crystalline polymers (LCPs) are known to have
high modulus and unique properties of the formation of
lyotropic solutions or thermotropic melts [1–8]. The blend-
ing of a thermotropic LCP with various flexible chain
polymers has been of interest in recent years [9–32]. The
incorporation of a thermotropic LCP to the flexible chain
polymers may result in the improvement of mechanical
strength and processibility of the flexible chain polymers.
On these points of view, many investigators have studied the
blends of a thermotropic LCP with flexible chain polymers
such as poly(ether imide) (PEI) [9–14], poly(ether ether
ketone) (PEEK) [14–20], polysulfone [21,22], polycarbo-
nate (PC) [23–29], poly(ethylene terephthalate) [30,31],
and a copolymer of tetrafluoroethylene and hexafluoro-
propylene [32].

Flory [33] proposed a modified lattice theory in order to

investigate the phase equilibrium in solutions of tobacco
mosaic virus (TMV) particles. He incorporated the aniso-
tropy of the TMV into the original lattice theory [33]. In the
modified lattice theory [33], the free energy of mixing
(DGm) was given as a function of mole numbers, axial
ratio of TMV particles (x1), disorientation factor (y) and
the intermolecular interaction parameter (x12) between
TMV and solvent. Subsequently, Flory and coworkers
[34–39] applied the theory to lyotropic polymer solutions.
Intermolecular interaction was deliberately neglected in the
theory [34–39]. In our previous work [14,23], we have
applied the lattice theory to the blends of a thermotropic
liquid crystalline polymer and flexible chain polymers
such as PEI, PEEK, and PC, and reported the equilibrium
degree of disorder (y/x1) and the polymer–polymer inter-
action parameter (x12) of the blend at melt processing
temperature.

The miscibility between a thermotropic LCP and a
flexible chain polymer at melt processing temperature is
an important factor for understanding the physical proper-
ties of the blend. For the blend of a thermotropic LCP and a
flexible chain polymer, it has been reported that there are
some miscible pairs [17], partially miscible pairs [9,14,23],
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and immiscible pairs [21,22]. However, there are few
theories in the literature that describe the miscibility of
the blends of a thermotropic LCP and a flexible chain
polymer. Therefore, we hope to describe the miscibility of
the blends of a thermotropic LCP and flexible chain
polymers at melt processing temperature by using two
quantitative parameters: the polymer–polymer interaction
parameter (x12) and the degree of disorder (y/x1).

In this work, we apply Flory’s lattice theory to the blends
of a thermotropic LCP and a flexible chain polymer in order
to evaluate the polymer–polymer interaction parameter
(x12) and predict the miscibility limit. In this paper, we
have derived the Gibbs free energy of mixing (DGm) of
the blend containing a thermotropic LCP and a flexible
chain polymer from the lattice theory. Also the miscibility
limits (spinodal curve at constant temperature) of the binary
and ternary blends containing a thermotropic LCP and
flexible chain polymers have been calculated by the
proposed equations from the lattice theory.

2. Theory

2.1. Gibbs free energy of mixing (DGm)

Flory and coworkers [34–39] developed the lattice theory
in which the orientation of the LCP is considered in lyo-
tropic solutions. This lattice theory can be applied to the
blend systems containing a thermotropic LCP. The thermo-
tropic LCP can be treated as a freely jointed chain compris-
ing m rod-like segments of the same length, such as the
lyotropic LCP treated in Flory’s work [39]. For the binary
blend of a flexible chain polymer and a thermotropic LCP,
the blend can be treated as a fictitious ternary blend system
composed of a vacant cell (0), the LCP (1), and a flexible
chain polymer (2). The fraction of the vacant cell is limited
to zero. In this work, the configurational partition function is
obtained as follows:

ZM � �nT 2 n1�mx1 2 my�!
�nT 2 x1mn1�!n1!n

n1�my21�
T

" #

� �nT 2 x1mn1�!zn2
2

�nT 2 x1mn1 2 x2n2�!n2!n
n2�x221�
T

" #
�y2mn1� �1�

wherenT � n0 1 n1mx1 1 n2x2; m is the number of freely
rotating joints in the submolecule,x1 the axial ratio of each
of them rods comprising the molecule,x2 the contour length
of the flexible chain polymer (the molar volume of the
repeating unit of the flexible chain polymer is regarded as
1), y denotes the disorientation [34];y� x1 sinf; f is the
angle to the domain axis of the LCP, andz2 is the internal
configurational partition function for the flexible chain
polymer [39]. The first and second brackets in Eq. (1) are
combinatorial parts of the LCP and the flexible chain
polymer, respectively. The last bracket in Eq. (1) is the
orientational part. The orientational part can be given

more exactly by Flory–Ronca theory [40,41]. However,
we adopt an approximated value of the orientational part
in the configurational partition function for simplicity,
which will be discussed in this work. The limit of complete
disorder isy� x1 in this work. When the LCP has a com-
pletely ordered structure, the orientation factor (y) has a unit
value. When the fraction of a vacant cell is limited to zero,
then Eq. (1) reduces to:

ZM � �n2x2 1 ymn1�!y2mn1zn2
2

n1!n2!�n1mx1 1 n2x2�n1�my21�1n2�x221� : �2�

Introducing Stirling’s approximation, one can obtain the
entropy of mixing from Eq. (2). Adding the residual contri-
bution to the Gibbs free energy of mixing [42,43], we can
obtain Eq. (3) after some rearrangement:

DGm

RT
� n1 ln f1 1 n2 ln f2 1 x12f1f2�x1mn1 1 x2n2�

1 Dgorient �3�
where

Dgorient� n1m1y1 ln
y1

x1

� �
2 �x2n2 1 myn1�

× ln
�x2n2 1 myn1�
�x1mn1 1 x2n2�

� �
1 n1�m1 ln y2

1 2 m1y1 1 1�

2 n1�m ln y2 2 my1 1�
where ni is the number of moles of theith component
(i; j � 1;2 andi ± j), x12 the polymer–polymer interaction
parameter, andf i the volume fraction of componenti.
Subscripts 1 and 2 denote polymers 1 and 2, respectively.
y1 andy are the orientation factors of the LCP in pure state
and in blended state, respectively, andm the number of
flexible joints of the LCP. In fact,Dgorient is composed of
some part of combinatorial contribution and the orienta-
tional contribution in Eq. (3). In this work, the pure LCP
is treated as a perfectly ordered polymer at melt state:y1 �
m1 � 1 in Eq. (3).

When the LCP has a completely disordered structure (i.e.
y� y1 � x1), Dgorient becomes zero in Eq. (3). Then Eq. (3)
is reduced to the well-known Flory–Huggins equation.

2.2. Polymer–polymer interaction parameter (x12)

At equilibrium, the entropy may be maximized with the
variation of the disorientation factor (y). Therefore, the
equilibrium disorder can be obtained by equating
2 ln ZM =2y to zero [34] as follows:

exp
22
y

� �
� 1 2 f1 1 2

y
x1

� �
: �4�

The chemical potential of componenti is obtained as the
partial derivative of Eq. (3) with respect toni. Then the
chemical potential of components 1 and 2 are given by
Eqs. (5) and (6) after the substitution of Eq. (4) to the
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derivative of Eq. (3), respectively:

Dm1
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� ln
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1 f1x1m

y
x1

2
1

x1m

� �
1 f2x1m 1 2

1
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2
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2
1
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2x2

y

1 x2x12f
2
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Similarly, the chemical potential of the isotropic phase can
be obtained by Eqs. (7) and (8), wheny� x1 :

Dm1

RT
� ln

f1

x1

� �
1 f1�x1m2 1�1 f2x1m 1 2

1
x2

� �
2 2m ln x1 1 x1mx12f

2
2; �7�

Dm2

RT
� ln f2 1 f1x2 1 2

1
x1m

� �
1 f1�1 2 x2�1 x2x12f

2
1:

�8�
At equilibrium, the chemical potential of each component

must be the same in both phases. Denoting the anisotropic
phase by a single prime and the isotropic phase by a double
prime, respectively, we have Eq. (9) for the LCP
(component 1):

Dm 01 � Dm 001: �9�
Then, we can obtain Eq. (10) from Eqs. (5), (7), and (9):

ln
f 01
f 001

 !
1 f 01x1m

y
x1

2
1

x1m

� �
2 f 001�x1m2 1�

1 x1m 1 2
1
x2

� �
�f 02 2 f 002�1 2m 1 1 ln

x1

y

� �� �
1 x1mx12�f2

2
0 2 f2

2
00� � 0: �10�

Similarly, we have Eq. (11) for the flexible chain polymer
(component 2):

Dm 02 � Dm 002: �11�
Then we can obtain Eq. (12) from Eqs. (6), (8), and (11):

ln
f 02
f 002

 !
1 f 01x2

y
x1

2
1

x1m

� �
2 f 001x2 1 2

1
x1m

� �

1 �x2 2 1��f 02 2 f 002�1
2x2

y
1 x2x12�f2

1
0 2 f2

1
00� � 0:

�12�
If the volume fractions in each conjugate phase can be

determined experimentally, the polymer–polymer inter-
action parameter (x12) and the degree of disorder (y/x1)
can be calculated by Eqs. (4), (10), and (12) in equilibrium
condition. The volume fractions in each phase have been

determined from the experimentally measured glass transi-
tion temperatures (Tgs) of the blends as reported in our
earlier papers [14,23,44,45].

2.3. Miscibility limit of polymer blends

Eq. (3), which is expressed as the number of moles and
volume fraction of each component can be expressed as a
function of just the blend composition as follows:

~G� f1

x1m
ln f1 1

f2

x2
ln f2 1 x12f1f2 1 D ~gorient �13�

where

D ~gorient� f1

x1m
ln

1
x1m

� �

2 1 2 f1 1 2
y
x1

� �� �
ln 1 2 f1 1 2

y
x1

� �� �

2
f1

x1m
�m ln y2 2 my1 1�:

The miscibility limit of the binary polymer blend containing
a thermotropic LCP is obtained at the spinodal of Eq. (13):

22 ~G

2f2
1

� 0: �14�

For the binary polymer blends containing a thermotropic
LCP, the spinodal relationship is obtained as Eq. (15)
after the substitution of Eq. (13) into Eq. (14):

1
f1x1m

1
1

f2x2
2 2x12 2

�1 2 �y=x1��2
�1 2 f1�1 2 �y=x1��� � 0: �15�

For the ternary polymer blends containing a thermotropic
LCP, the Gibbs free energy of mixing is obtained as Eq. (16):

~G� f1

x1m
ln f1 1

f2

x2
ln f2 1

f3

x3
ln f3 1 x12f1f2

1 x23f2f3 1 x31f3f1 1 D ~gorient: �16�
For the ternary polymer blend containing a thermotropic
LCP, the spinodal relationship is obtained as Eq. (18)
after the substitution of Eq. (16) into Eq. (17):

22 ~G

2f2
1

22 ~G
2f12f2

2
22 ~G

2f12f2

" #2

� 0; �17�

x1mf1 1 x2f2 1 x3f3 2 2�x1mx2�x1 1 x2�f1f2

1 x2x3�x2 1 x3�f2f3 1 x3x1m�x3 1 x1�f1f3�
1 4x1mx2m3�x1x2 1 x2x3 1 x3x1�f1f2f3

2
�1 2 �y=x1��4

�1 2 f�1 2 �y=x1���2
"

2 1
f3
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#
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where

xi �
xij 1 xik 2 xjk

2
:

Apart from the last term, Eq. (18) is similar to the spinodal

relationship of the Flory–Huggins equation in the work of
Su and Fried [46], which described the miscibility of
polymer blends containing three isotropic polymers. In
Eq. (18), it is worth noting that the LCP phase becomes
an isotropic phase wheny=x1 � 1; then the last term of
Eq. (18) becomes zero. Therefore, Eq. (18) can be used in
the polymer blends containing the LCP as well as polymer
blends containing only isotropic polymers. Also, the effect
of anisotropy of the LCP on the miscibility of ternary
polymer blends can be estimated using Eq. (8) by varying
the y/x1 values. The detailed description of Eqs. (15) and
(18) is introduced in Section 3.

3. Results and discussion

3.1. Model calculation of the polymer–polymer interaction
parameter (x12)

A model calculation ofx12 using Eqs. (10) and (12) is
shown in Fig. 1. In Fig. 1(a), the apparent volume fraction of
component 1 in the component-1-rich phase (f1) is set equal
to the apparent volume fraction of component 2 in the
component-2-rich phase (f2). The components 1 and 2
denote the LCP and the flexible chain polymer, respectively.
The degree of polymerization of components 1 (x1m) and 2
(x2) is set equal to 25. From Fig. 1(a), we can see thatx12 is
decreasing with the decrease off1 at a certain degree of
disorder (y/x1). Also we can see thaty/x1 is increasing with
the decrease off1 at a certain value ofx12. From this result,
it can be surmised that the ordering of the LCP is inhibited
by the flexible polymer that is dissolved in the LCP-rich
phase. In order to see the molecular weight dependency of
the miscibility of a LCP and a flexible polymer, component
polymers having various degrees of polymerization are used
in Eqs. (10) and (12).

In Fig. 1(b) and (c) are shown the results of a model
calculation whenx1m and x2 are set equal to 50 and 100,
respectively. From Fig. 1, it is predicted that the miscibility
is increased with the increase of the degree of disorder and
with the decrease of the degree of polymerization at a
certain value ofx12. From these results, it is suggested
that the two quantitative parameters,x12 and y/x1, can be

H.S. Lee et al. / Polymer 42 (2001) 2177–21842180

Fig. 1. Model calculation of polymer–polymer interaction parameter (x12)
with degree of disorder (y/x1) and apparent volume fraction (f): (a) x1m�
x2 � 25; (b) x1m� x2 � 50; (c) x1m� x2 � 100:

Table 1
Apparent volume fraction (f ), degree of disorder (y/x1), and polymer–
polymer interaction parameter (x12) of the 0.7 weight fraction LCP blends

Blend f 01
a f 002

a y/x1
b x12

c References

LCP–PC 0.9875 0.8671 0.80 0.074 [23]
LCP–PEI 0.9893 0.9785 0.76 0.182 [14]
LCP–PEEK 0.9643 0.9658 0.92 0.066 [14]

a Single prime and double prime denote LCP-rich phase and flexible
chain polymer-rich phase, respectively. Subscripts 1 and 2 denote LCP
and flexible chain polymer, respectively.f 01 � 1 2 f 02 andf 002 � 1 2 f 001:

b Degree of disorder of LCP in amorphous phase.
c All x12 valuse are calculated by Eqs. (4), (10), and (11).



used to estimate the miscibility of the blends containing a
thermotropic LCP. In our early studies of blends of LCP
with polycarbonate (PC), poly(ether imide) (PEI), and
poly(ether ether ketone) (PEEK) [14,23], we have reported
x12 and y/x1 for the blends of LCP–PC, LCP–PEI, and
LCP–PEEK, and the values are shown in Table 1.

3.2. Miscibility of binary polymer blends

For a binary polymer blend containing a thermotropic
LCP and a flexible chain polymer, the miscibility limit
which is a spinodal curve at constant temperature has
been calculated by Eq. (15) atx12 � 0 and x1m� x2 �
25; and the result is shown in Fig. 2. In Fig. 2, the flexible
chain polymer appears to be miscible with a thermotropic
LCP when the degree of disorder (y/x1) of a thermotropic
LCP is higher than 0.63, which is defined as a critical degree
of disorder ��y=x1�c�: However, there is phase separation
wheny=x1 , �y=x1�c in Fig. 2. For a binary polymer blend
having a negative value ofx12, the miscibility limit has also
been calculated by Eq. (15) and the result is shown in Fig. 3,

which is found to be similar to the result shown in Fig. 2. For
the flexible–flexible chain polymer blends, it is well known
that the component polymers are miscible whenx12 # 0
[47]. By comparing the results of a thermotropic LCP and
flexible chain polymer blends (Fig. 2) and flexible–flexible
chain polymer blends with regard tox12 andy/x1, bothx12

andy/x1 should be considered in order to find the miscibility
in the blend of a thermotropic LCP and a flexible chain
polymer. Here, it is worth noting that the anisotropy of a
thermotropic LCP disappears wheny=x1 � 1 in Eqs. (3) and
(15).

In Fig. 3, the miscibility limit of a binary polymer blend
containing a thermotropic LCP and a flexible chain polymer
has been calculated by Eq. (15) with various values ofx12.
In Fig. 3, we can see that the critical degree of disorder
��y=x1�c� is increased with the increase ofx12. Also, we
can see that the critical degree of disorder��y=x1�c� becomes
1.0 whenx12 � 0:08 in Fig. 3. This result suggests that
x12 � 0:08 is the critical polymer–polymer interaction
parameter ((x12)c) of a thermotropic LCP and a flexible
chain polymer blend in the case whenx1m� x2 � 25: The
critical polymer–polymer interaction parameter ((x12)c) can
also be determined by Eq. (19). Eq. (19) can be obtained
from the contact point of the spinodal and binodal of Eq. (3):

�x12�c � 1
2 �x1m21=2 1 x21=2

2 �2: �19�
Eq. (19) is similar to the result of Scott and Tompa [42,43]
for the flexible–flexible chain polymer blend.

At this point, the miscibility of the binary polymer blend
containing a thermotropic LCP and a flexible chain polymer
can be summarized as follows: whenx12 . �x12�c; phase
separation is always observed in any value of the degree
of disorder (y/x1). Whenx12 , �x12�c; phase separation is
also observed at�y=x1� , �y=x1�c: When x12 , �x12�c and
�y=x1� . �y=x1�c; the homogeneous phase is observed at all
blend compositions.

The effect of the degree of polymerization on the
miscibility limit of the binary polymer blends containing a
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Fig. 2. Spinodal curve of the binary polymer blend containing a thermo-
tropic LCP and a flexible chain polymer with various values of degree of
disorder (y/x1) of the LCP:x12 � 0 andx1m� x2 � 25:

Fig. 3. Spinodal curves of the binary polymer blend containing a thermo-
tropic LCP and a flexible chain polymer with various values ofy/x1 andx12:
x1m� x2 � 25:

Fig. 4. Effect of the degree of polymerization of a thermotropic LCP on the
miscibility of the blends with degree of disorder (y/x1): x12 � 0:04 andx2 �
25:



thermotropic LCP and a flexible chain polymer has been
examined by Eq. (15). In Fig. 4, the effect of the degree
of polymerization (x1m) of the LCP component on the
miscibility of the blends is shown at constantx2 �x2 � 25�
andx12 values�x12 � 0:04�: In Fig. 4, the�y=x1�c is shown to
increase with the increase of the degree of polymerization of
the LCP (x1m). This result suggests that the miscibility is
decreased with the increase ofx1m, which is the general
description of the miscibility of the polymeric blends. In
Fig. 5, the effect of the degree of polymerization of the
flexible chain polymer (x2) on the miscibility of the
blends is shown at constantx1m �x1m� 25� and x12

values �x12 � 0:04�: In Fig. 5, the �y=x1�c is shown to
increase with the increase of the degree of polymerization
of a flexible chain polymer (x2), which is similar to the result
of Fig. 4.

3.3. Miscibility of ternary polymer blends

For a ternary polymer blend containing a thermotropic
LCP and two flexible chain polymers, the miscibility limit
(spinodal curve at constant temperature) has been calculated
by Eq. (18). Model calculations have been performed for

four cases of the polymer blend systems, which are summar-
ized in Table 2. Case I is the ternary polymer blend system
in which all component polymers are immiscible with each
other such thatx12 . �x12�c; x23 . �x23�c; andx13 . �x13�c:
Case II is the ternary polymer blend system in which a
thermotropic LCP(1) is immiscible with a flexible chain
polymer(2) such thatx12 . �x12�c; a flexible chain poly-
mer(2) is miscible with a flexible chain polymer(3) such
that x23 , �x23�c; and a thermotropic LCP(1) is miscible
with a flexible chain polymer(3) such thatx13 , �x13�c
andy=x1 . �y=x1�c;13: Case III is the ternary polymer blend
system in which a thermotropic LCP(1) is immiscible with a
flexible chain polymer(2) such thatx12 . �x12�c; a flexible
chain polymer(2) is miscible with a flexible chain poly-
mer(3) such thatx23 , �x23�c; and a thermotropic LCP(1)
is immiscible with a flexible chain polymer(3) due to the
anisotropy of the LCP such thatx13 , �x13�c and y=x1 ,
�y=x1�c;13: Case IV is the ternary polymer blend system in
which all component polymers are miscible separately such
that x12 , �x12�c; x23 , �x23�c; x13 , �x13�c; and y=x1 .
�y=x1�c;12 andy=x1 . �y=x1�c;13:

In the calculations we have used arbitrary values ofx ij

and y/x1 that satisfy the conditions suggested in Table 2,
since we hope to present only qualitative features of the
miscibility of the ternary polymer blends containing a ther-
motropic LCP. The spinodal curves for Case I have been
calculated by Eq. (18). Spinodal curves for the (Case I)
systems having equal values ofx ij are shown in Fig. 6,
wherey=x1 � 0:3: In Fig. 6, the two miscibility gaps appear
along the sides of the triangle and the closed curve appears
in the center of the triangle diagram. These results are simi-
lar to the calculation results of Su and Fried [46] for the
ternary polymer blend containing three flexible chain poly-
mers. The central miscibility gap may be ascribed to the
coexistence of three phases, since three critical points
appear in this curve. The three critical points indicate
three phases having identical chemical potential. The three
critical points appear in the direction of the angular points
indicating each component-rich phase in the ternary blends.
We have calculated the spinodal curves for the various
values ofx ij of Case I. The coexistence curve of the three
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Fig. 5. Effect of the degree of polymerization of a flexible chain polymer on
the miscibility of the blends with degree of disorder (y/x1): x12 � 0:04 and
x1m� 25:

Table 2
Conditions of polymer–polymer interaction parameter (x12) and degree of disorder (y/x1) in four different cases of ternary blend systems for the calculation of
spinodal curves

Case Binary blend Resultsa

LCP(1)1 Flexible(2) Flexible(2)1 Flexible(3) LCP(1)1 Flexible(3)

Case I Immiscible,x12 . �x12�c Immisciblex23 . �x23�c Immisciblex13 . �x13�c Fig. 6
Case II Immiscible,x12 . �x12�c Miscible,x23 , �x23�c Miscible,x13 , �x13�c;

y=x1 . �y=x1�c;13

Fig. 7

Case III Immiscible,x12 . �x12�c Miscible,x23 , �x23�c Immiscible,x13�x13�c;
y=x1 , �y=x1�c;13

Fig. 8

Case IV Miscible,x12 , �x12�c;
y=x1 . �y=x1�c;12

Miscible,x23 , �x23�c Miscible,x13 , �x13�c;
y=x1 . �y=x1�c;13

Fig. 9

a All results have been calculated by Eq. (18).



phases has appeared only for the systems having similar
values ofx i j.

The spinodal curves for Cases II and III are presented in
Figs. 7 and 8, respectively. The same values ofx i j have been
used in Figs. 7 and 8. The valuey=x1 � 0:8 is used for Fig. 7
andy=x1 � 0:1 for Fig. 8. In Figs. 7 and 8, the critical degree
of disorder �y=x1�c;13 is 0.72. Therefore a thermotropic
LCP(1) and a flexible chain polymer(3) are miscible in
Fig. 7 and immiscible in Fig. 8. In Fig. 8, we can see that
the spinodal curve is bent near the axes of components 1 and
3. The bent curve is not seen in Fig. 7. The bent curve shown
in Fig. 8 may be due to the strong effect of anisotropy
�y=x1 � 0:1� of the LCP compared to the anisotropy�y=x1 �
0:8� of the LCP in Fig. 7. The spinodal curve shown in Fig. 8
is similar to the phase diagram of the ternary blends of
poly(ether ether ketone)–poly(ether imide)–LCP, which is
reported qualitatively by thermal analysis [48].

One would expect a concave surface of Gibbs free energy
of mixing for a fully miscible ternary system. However, a
hump may appear in the surface of Gibbs free energy of
mixing with a phase separation. For this case, there are
compositions that satisfy the equality of Eq. (18), which
are the inflection points of the surface of Gibbs free energy

of mixing. In Eq. (18), we can also see the compositions
with three negativex ij values satisfying the equality. This
may be caused by small difference inx ij values, which is the
so-calleduDxu effect [46,49]. In Fig. 9, the spinodal curves
have been calculated for Case IV wherey=x1 � 0:8: In Fig.
9, we can see a phase separation curve in the central region.
The phase separation may be due to the effect, since all
component polymers are miscible with each other.

From the results of Figs. 1–9, it is suggested that the
proposed Eqs. (3)–(19) are consistent quantitatively with
the miscibility behavior of the binary and ternary polymer
blends containing a thermotropic LCP and a flexible chain
polymer at melt processing temperature. The two quanti-
tative parameters, the polymer–polymer interaction
parameter (x12) and the degree of disorder (y/x1), can be
used to estimate the miscibility of the blend of a thermo-
tropic LCP and flexible chain polymers.

4. Conclusions

In the blends of a thermotropic LCP and flexible chain
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Fig. 6. The spinodal curves for the ternary polymer blend containing a
thermotropic LCP and two flexible chain polymers:x1m� x2 � x3 � 50;
�xij �c � 0:04; �y=x1� � 0:3; x12 � x23 � x13 � 0:09 (Case I).

Fig. 7. The spinodal curves for the ternary polymer lend containing a
thermotropic LCP and two flexible chain polymers:x1m� x2 � x3 � 50;
�xij �c � 0:04; �y=x1�c;13 � 0:72; x12 � 0:06; x23 � 0:0003; x13 � 0:0001
andy=x1 � 0:8 (Case II).

Fig. 8. The spinodal curves for the ternary polymer blend containing a
thermotropic LCP and two flexible chain polymers:x1m� x2 � x3 � 50;
�xij �c � 0:04; �y=x1�c;13 � 0:72; x12 � 0:06; x23 � 0:0003; x13 � 0:0001
andy=x1 � 0:1 (Case III).

Fig. 9. The spinodal curves for the ternary polymer blend containing a
thermotropic LCP and two flexible chain polymers:x1m� x2 � x3 � 50;
�xij �c � 0:04; y=x1 � 0:8; x12 � 20:5; �y=x1�c;12 � 0:3; x23 � 20:2; x13 �
0:02 and�y=x1�c;13 � 0:78 (Case IV).



polymers, miscibility has been predicted from the model
calculation by the application of Flory’s lattice theory.
From the results of the model calculation, it has been
predicted that the miscibility is increased with the increase
of the degree of disorder (y/x1) of the LCP and with the
decrease of the degree of polymerization (x1m and/orx2).
In addition, the phase behavior of the blend of the LCP and a
flexible chain polymer at melt processing temperature may
be evaluated by the two quantitative parameters: the
polymer–polymer interaction parameter (x12) and the
degree of disorder (y/x1).

From the results of a binary polymer blend containing the
LCP and a flexible chain polymer, it has been predicted that
phase separation occurs for any value of degree of disorder
(y/x1) at x12 . �x12�c: Whenx12 , �x12�c; phase separation
is also predicted aty=x1 , �y=x1�c: Whenx12 , �x12�c and
y=x1 . �y=x1�c; a homogeneous phase is predicted at all
blend compositions.

From the results of ternary polymer blends containing the
LCP and two flexible chain polymers, it can be concluded
that the miscibility of the ternary blends can be estimated by
the application of Flory’s lattice theory. When three binary
polymer blend pairs are immiscible, the coexistence curve
of the three phases has appeared for the ternary blends
having similar values ofx ij between component polymers.
When the LCP is immiscible with two flexible chain
polymers and the two flexible chain polymers are miscible
with each other, the simulated spinodal curve is bent near
the axes of components 1 and 3. This is due to the strong
effect of anisotropy of the LCP. When three pairs of binary
polymer blends are miscible, a phase separation is also
observed due to theuDxu effect.
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